Package: Pareto 2.4.5
Pareto: The Pareto, Piecewise Pareto and Generalized Pareto Distribution
Utilities for the Pareto, piecewise Pareto and generalized Pareto distribution that are useful for reinsurance pricing. In particular, the package provides a non-trivial algorithm that can be used to match the expected losses of a tower of reinsurance layers with a layer-independent collective risk model. The theoretical background of the matching algorithm and most other methods are described in Ulrich Riegel (2018) <doi:10.1007/s13385-018-0177-3>.
Authors:
Pareto_2.4.5.tar.gz
Pareto_2.4.5.zip(r-4.5)Pareto_2.4.5.zip(r-4.4)Pareto_2.4.5.zip(r-4.3)
Pareto_2.4.5.tgz(r-4.4-any)Pareto_2.4.5.tgz(r-4.3-any)
Pareto_2.4.5.tar.gz(r-4.5-noble)Pareto_2.4.5.tar.gz(r-4.4-noble)
Pareto_2.4.5.tgz(r-4.4-emscripten)Pareto_2.4.5.tgz(r-4.3-emscripten)
Pareto.pdf |Pareto.html✨
Pareto/json (API)
NEWS
# Install 'Pareto' in R: |
install.packages('Pareto', repos = c('https://ulrichriegel.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ulrichriegel/pareto/issues
- Example1_AP - Example data: Attachment Points
- Example1_EL - Example data: Expected Losses
Last updated 2 years agofrom:4da101e028. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:dGenParetodParetodPiecewiseParetoExcess_FrequencyFit_PML_CurveFit_ReferencesGenPareto_Layer_MeanGenPareto_Layer_SMGenPareto_Layer_VarGenPareto_ML_Estimator_Alphais.PGP_Modelis.PPP_Modelis.valid.PGP_Modelis.valid.PPP_ModelLayer_MeanLayer_SdLayer_VarLocal_Pareto_AlphaPareto_CDFPareto_ExtrapolationPareto_Find_Alpha_btw_FQ_LayerPareto_Find_Alpha_btw_FQsPareto_Find_Alpha_btw_LayersPareto_Layer_MeanPareto_Layer_SMPareto_Layer_VarPareto_ML_Estimator_AlphaPareto_PDFpGenParetoPGP_ModelPiecewisePareto_CDFPiecewisePareto_Layer_MeanPiecewisePareto_Layer_SMPiecewisePareto_Layer_VarPiecewisePareto_Match_Layer_LossesPiecewisePareto_ML_Estimator_AlphaPiecewisePareto_PDFpParetopPiecewiseParetoPPP_ModelPPP_Model_Excess_FrequencyPPP_Model_Exp_Layer_LossPPP_Model_Layer_SdPPP_Model_Layer_VarPPP_Model_SimulateqGenParetoqParetoqPiecewiseParetorGenParetorParetorPiecewiseParetoSimulate_Losses
Dependencies: